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ORBITS AND LATTICES
FOR LINEAR RANDOM NUMBER GENERATORS
WITH COMPOSITE MODULI

RAYMOND COUTURE AND PIERRE L’ECUYER

ABSTRACT. In order to analyze certain types of combinations of multiple recur-
sive linear congruential generators (MRGs), we introduce a generalized spectral
test. We show how to apply the test in large dimensions by a recursive pro-
cedure based on the fact that such combinations are subgenerators of other
MRGs with composite moduli. We illustrate this with the well-known RAN-
MAR generator. We also design an algorithm generalizing the procedure to
arbitrary random number generators.

1. INTRODUCTION

The structure of a (uniform) random number generator generally consists of a
finite state space X, together with a transition mapping

T:Y—3%
determining the evolution of the system, and an output mapping
®:¥Y— Q/Z.
Starting from an arbitrary seed o9 € %, this generator produces a sequence
®(T(00)) €Q/Z, i=0,1,...

of pseudorandom numbers. One can associate with such a system (X, T, ®), and

each positive integer d, a lattice Ag in R? as follows. First, we define the mapping
3@ . % - (R/Z) by

®9(0) = (2(0), ®(T(0)), ... , (T (0))).
We then define Ay C R? as the inverse image, by the canonical mapping
1) can: R% — (R/Z)4,

of the subgroup of (R/Z)? generated by all differences between any two elements
of ®@(X). The structure of the lattice A, is indicative of the distribution of the
set of all (overlapping) d-tuples of successive values of the generator. Determining
the length of the shortest vector of the dual lattice A to Ag4, the so-called spectral
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190 RAYMOND COUTURE AND PIERRE L’ECUYER

test, gives significant insight into this structure and the distribution properties of
the corresponding generator [3, 5, 8].

However, if the action of T on ¥ is not transitive, that is, if there exists some
T-invariant, proper subset ¥’ C X, such a subset also defines a (sub)generator
(¥',T|s, ®|g), and one can, as above, consider its associated lattices Ag. These
will be contained, strictly in general, in the corresponding lattices defined by .
The question of the relative significance of the various lattices arises. In particular,
if T' is not one-to-one, then T(X), T?(X), ... is a decreasing sequence of T-invariant
subsets, ending with 7, T*(X), which is especially interesting, since it is precisely the
set 3" of recurrent states. If this set quickly attracts into it an arbitrary state, then
the lattices associated with X' are more relevant to the behavior of the generator
than those associated with X.

We will discuss this question for the class, defined in §3, of multiple recursive
linear congruential random number generators (MRGs) with respect to an arbitrary
modulus. As the linear generators considered are not assumed homogeneous, we
show in §2 how their study can be reduced to that of corresponding homogeneous
generators. Combination, as defined in §4, is a standard construction in the design
of random number generators [6, 12]. Although the combination of MRGs is, in
general, not a MRG, it is shown there that, in case of relatively prime moduli,
it is a subgenerator of another MRG with modulus equal to the product of the
component moduli, and which we will call their product MRG. One can then study
the combined generator through this MRG since, in general, for any subgenerator
of an MRG, there is a simple way to take advantage, in the task of determining
the short vectors in A, of the solution of the corresponding lower-dimensional
problem (see [5, 8] for the case of LCGs). This is generalized to the case of arbitrary
generators by means of the algorithms described in §7. We illustrate, in §6, our
discussion with a well-known generator proposed by Marsaglia, Zaman, and Tsang
[10], usually designated by RANMAR. Some general principles, which indicate a
precise limitation on the possible improvement obtained using combination, are
applied to determine, in this instance, a shortest vector in A9 for d up to 100.

We will use the following terminology. An isomorphism between the two ge-
nerators (Xq1,71,®;) and (X2, Tp, ®5) is a one-to-one mapping f : X1 ~ Y, such
that To o f = foTy, and ®; = ®5 0 f. All properties of interest to us are invariant
under such an isomorphism. For instance, the associated lattices Ay are identical. If
the state spaces have the additional structure of an abelian group, we will say that
the isomorphism is additive if it preserves the group law. We recall that the volume
of a lattice is the volume of the parallelepiped generated by one of its bases. For
a vector v € R? we denote by v™ the vector in R obtained from v by adding a
zero coordinate. We will denote by e;, i = 1,...,d, the canonical basis for R —so
that e]” = e;!— and by S the (linear) right-shift on R? defined by S(ei) = eit1,
t1=1,...,d—1,and S(eq) = 0.

2. ADDITIVE GENERATORS

We will say that a generator (X,7,®) is additive if its state space ¥ has the
additional structure of an abelian group (we will write its law additively), and if
the transformation

TO:Z—>2
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defined by Tp(o) = T'(o) — T(0), as well as the output mapping ®, is a group
homomorphism. The generator (X, Ty, ®) is the corresponding homogeneous ge-
nerator (also additive), and we refer to T(0) as the increment. More generally, if
¥’ C ¥ is T-invariant (though not necessarily a subgroup), and therefore defining a
subgenerator, then the subgroup Xj, generated by the set of differences o1 — o9 with
o1,09 € Y/, is Tp-invariant and defines a corresponding homogeneous subgenerator
(that is, a subgenerator of (X, Ty, ®) given by a subgroup of ¥). It will be seen,
in this section, how the study of an additive generator, and its subgenerators,
with their associated lattices, is reduced to the homogeneous case. Homogeneous
subgenerators will be characterized algebraically in §5.

Example 1. The set X' of recurrent states of an additive generator (X, T, ®) is
obviously T-invariant, and the corresponding homogeneous subgenerator is defined
by the subgroup Xj of recurrent states with respect to Tp. Indeed, if 01,00 € ¥*
and n is a common multiple of their periods, then T (o1 —02) = T"(01) —T"(02) =
o1 — 02, 80 01 — 09 € Xf,. Conversely, if ¢ € X and oo € X', then T"(0 + 02) =
T5(o) + T™(02), and this is 0 + o9 if n is a common multiple of the periods of ¢
and o9 (relative to Ty and T, respectively). We thus obtain o + o € Xj.

Consider the mapping (not necessarily one-to-one) Ta : ¥ — X defined by
Ta(o) =T(0o) — 0. Then clearly,
(2) Ta(Y) C 3.
Lemma 1. The mapping Ta transforms T into Ty, that is, we have
TaoT =TyoT.

Proof. For ¢ € ¥ we have Ta o T(0) = T*(0) — T(c) = To o T(o) — To(o) =
To o Ta(o). O

Example 2. If ¥’ is the forward T-orbit of oy then, by Lemma 1, Ta(Y') is the
forward Typ-orbit of Ta(op). Therefore, in this case, %, is equal to the subgroup
generated by Tha(X') since it is, from its definition, generated by the differences
T™(00) = T™*(00) = Ty~ (Ta(00))-

In general, not every homogeneous subgenerator arises in this way as a ¥ for
some T-invariant subset ¥'. We have

Proposition 1. A Ty-invariant subgroup of ¥ is of the form X{ for some T-
invariant subset X' of ¥ if and only if it has a nonvoid intersection with Ta(X).

Proof. By (2), the condition is clearly necessary. Conversely, assume X; is a Tp-
invariant subgroup and that Ta(¢’) € ¥;. Put ¥’ = ¢’ +3;. Then ¥’ is T-invariant
since T'(0' +01) =0’ + Ta(o') + Tp(o1) € ¥’ for o1 € ¥7 and Ej) = Z;. O

If, for instance, T is a translation, so that Ta = T'(0), then the condition on
the Tp-invariant subgroup is that it should contain T'(0), that is, it should also be
T-invariant.

We define @ : & — (R/Z)? by

867 (0) = (8(0), B(To(0)), ., B(T " (0))).
Proposition 2. A subgenerator of an additive gemerator, and its corresponding
homogeneous subgenerator, have identical associated lattices Ag and AP . The vo-

lume of A is given by the order of the image, by <I>éd), of the state space of the
homogeneous subgenerator.
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Proof. For any T-invariant subset ¥/, <I>éd)(26) is the subgroup generated by all
differences of pairs of elements of ®(#(¥'), and the first statement follows. The
order of @éd)(E()) is equal to the index [A4 : Z%], which is equal to the reciprocal of
the volume of Ay4. It is thus equal to the volume of A, O

Example 3. Assume that 7 is a translation and that ®(X) has exponent m. Then
<I>6d)(2) is the subgroup of elements of ((1/m)Z/Z)? with identical coordinates.
The lattice Ag4 is therefore the set of vectors 1/m Y. x;e; with integral ; such that

© z; = z; (mod m), and its dual A@ is the set of vectors >, xie; with integral z;
such that Y, z; =0 (mod m).

3. MULTIPLE RECURSIVE LINEAR CONGRUENTIAL GENERATORS

We now consider a special class of additive generators, namely the multiple
recursive (inhomogeneous) linear congruential generators (MRG for short) which
can be defined as follows. Call a group an f-group if it is finite, abelian and, m
being its exponent, if it admits a basis as a Z/mZ-module.

Definition 1. An additive generator (2, T, ®) is called an MRG if the state space
Y is an f-group and the output mapping ® is generic in the sense that its kernel
contains no nonzero forward Ty-orbit.

The modulus (resp. order) of a given MRG, (2, T, ®), is the exponent (resp. rank)
of ¥. If m is the modulus and k the order, then the mapping <1>§)’“) is one-to-one
with image CD(()k) (2) = ((1/m)Z/Z)*. Therefore, there exists a state p1 € 3, uniquely
determined by the conditions

3) Ty (W) = (1/m) i, i=1,....k

We refer to u as the canonical unit of the MRG. We also refer to the (monic)
characteristic polynomial Pe, (X) € Z/mZ[X] of Ty as the characteristic polynomial
of the generaror. Clearly, a Z/mZ-basis for ¥ is given by pu, To(), ..., Te*(1).

Proposition 3. For an MRG (X, T, ®) with modulus m and characteristic polyno-
mial Pa,(X), the following conditions on P(X) € Z/mZ[X], are equivalent:
(i) P(To)(p) =0,
(i) P(To) =0,
(iit) Pon(X) divides P(X).
In particular, P, (X) is also the minimal polynomial of Tp.

Proof. We have Pep(Ty) = 0 by the Hamilton-Cayley theorem. If Pe,(X) divides
P(X), then clearly P(Ty) = 0, and P(Tp)(u) = 0. Assume, conversely, that
P(Ty)(p) = 0. Then P(Ty) = 0 since an arbitrary element o € ¥ can be expressed
as 0 = Py(Ty)(u) for some Py (X) € Z/mZ[X], and P(Ty)(0) = P1(To)P(To)(p) =
0. The Euclidean algorithm provides us with polynomials Q(X), R(X) € Z/mZ[X]
such that R(X) has degree less than the order, and P(X) = P, (X)Q(X) + R(X).
It follows that R(Tp)(u) = 0, so that R(X) =0, and Pe, (X) divides P(X). O

Proposition 4. Two additively isomorphic MRGs have the same modulus and
characteristic polynomial. Further, there is at most one additive isomorphism bet-
ween them and their canonical units correspond under it. A homogeneous MRG
1s determined up to an additive isomorphism by its modulus and its characteristic
polynomial.
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Proof. Consider the MRGs (1,71, ®1) and (X2, Ts, ®2), with respective canonical
units ©; and pe. Assume there is an additive isomorphism f : ¥; — X5 between
them. Clearly ¥; and X5 then have the same exponent. We also have Too f = foT,
so that T»(0) = f(T1(0)), and

(4) Teoo f=foTio.

The first statement in the proposition follows. Since ®5 o f = ®;, we obtain, using
(4), CD% of = CD%, k being the order. It follows that f(u1) = po and, again
using (4), that f(T7} o(u1)) = T40(p2) for'l < i < k. The second statement follows.
Assume now that the two generators are homogeneous with the same modulus
m and same characteristic polynomial P.,(X). Since, by Proposition 3, we have
for P(X) € Z/mZ[X] that P(T1)(pt1) = 0 (resp. P(T2)(u2) = 0) if and only if
P (X)|P(X), the correspondence P(T1)(p1) — P(T2)(u2) is well defined, and is
the required isomorphism between the two generators. O

If we lift the characteristic polynomial Pe,(X) of an MRG (X, T, ®) to a monic
polynomial X* —a; X*~1 —... —q; € Z[X], and put

b=®(T"0) — a1 T 1(0) — - -+ — a, T°(0)),
the output sequence u; = ®(T%(00)) € Q/Z, i = 0,1,..., will satisfy the recurrence
U; = a1Ui—1 + -+ agli—x + b, >k

In fact, u; and b belong to (1/m)Z/Z if m is the modulus of the MRG, and our
generator is essentially identical to a multiple recursive (inhomogeneous) linear
congruential generator—as defined, for instance, in [3, 6, 7, 11]—for the (arbitrary)
modulus m.

It follows from Propositions 2 and 4 that the lattices Aq and AD associated
with an MRG are determined by its modulus and characteristic polynomial. In
particular, if we put, for d > k,

(5) Weh = —age1 — -+ — Q1€k + exy1,

we have the following.

Proposition 5. If d < k, then A9 =mZ?. If d > k, then AY admits the lattice
basis me1, ..., mex, Weh, SWeh, - - ., ST * Twey.

Proof. Since ® is generic, CD(()d)(E) is the subgroup ((1/m)Z/Z)% when d < k, and
has order equal to m* for d > k. The first statement follows. Assume d > k.
By Proposition 2, A(® has volume equal to m* and, since the proposed vectors

clearly belong to A9 and generate a lattice also of volume m*, this lattice must
be A@, |

4. PRODUCTS AND EXTENSIONS OF MRGS

From a given finite family of generators (¥;,T;, ®;) one may form the combined
generator ([, Xs, [, Ti, ®) where ®((0;);) = >, ®i(0;). (Other combination me-
thods have been used in actual implementations [1, 6, 9] but they are often well
approximated by combinations in the above sense.) The lattices Ay (resp. A(®)
“associated with a combination are the sum (resp. intersection) of those associated
with the components.
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The combination of MRGs of the same order, and with pairwise relatively prime
moduli, is again an MRG. Its modulus m is the product of the component mo-
duli m;, and its characteristic polynomial P, (X) is determined by the conditions
P (X) = Peni(X) (mod m;), where P, ;(X) are the component characteristic
polynomials. More generally, if the orders k; are not all equal, it would seem
natural to consider an MRG of order k = max; k; with a characteristic polynomial
Pun(X) satisfying Pen(X) = X*7% Py, ;(X) (mod m;). However, the state space of
such an MRG has a cardinality larger than that of the combined generator, and
the question arises of determining the exact relation between these two generators.
This can be done by introducing the notion of a nil-extension of MRGs.

An extension of a given generator (3, T, ®) is a generator (£, 7T, ®) with ¥ C X,
and such that 7 = T and ® = ® over ¥. When both generators are additive, we will
say that the extension is additive if ¥ is a subgroup of . The increments 7'(0) and
T(0) are then equal and contained in ¥. In case of two MRGs with equal moduli,
an extension will be called a nil-extension if it is additive and if any Ty-orbit in &
eventually ends up in X.

Lemma 2. Assume that (X, T, ®) is a nil-extension of (X, T,®). Letk, Pon(X), fi,
and k, Poh(X), p be their respective order, characteristic polynomial, and canonical
unit. If the integer i is sufficiently large, so that Ti(X) C X, then i > k — k. If
T~ (D) € %, then Pon(X) = XF %Py (X), and Ty () = p.

Proof. Assume T¢(¥X) C ¥ with ¢ < k — k. Then T§(i) € ¥ is not 0, but
®(TEH () = 0 for 0 < j < k, contradicting the genericity of ®.

If TE7%(Z) C © then, by Proposition 3, we have Py, (X)| X**P.,(X). Since
the two polynomials are monic and of the same degree, they are equal. To prove the
last statement it is sufficient to remark that Tp' *(f1) € ¥ satisfies the conditions
(3) defining p. O

If a nil-extension satisfies (with the above notations) Tg“_k(f]) C X, we will say
it is minimal.

Proposition 6. An MRG of order k admits a unique (up to an additive isomor-
phism) minimal nil-extension of order k' for each integer k' > k.

Proof. Let (X,T,®) be the given generator, m its modulus and p its canonical
unit. Embed ¥ as a direct factor in an f-group ¥ of rank k and exponent m.
Choose a supplement %' C ¥ to ¥ (so that ¥ = ¥ @), and choose a Z/mZ-basis.
Wiy ooy g for X0 Define T : ¥ — ¥ so that its restriction to ¥ is equal to
T, and such that Tp is a homomorphism satisfying the conditions To(u;) = pit1,
i=1,....,k—k—1,and To(uz_,) = . Define ® to be equal to ® on X, and 0 on
Y. Then (X, T, ®) is the required extension. Two nil-extensions of the same order
are (additively) isomorphic by Proposition 4 and the preceding lemma. O

We can now define the product MRG of a finite family of MRGs (%;,T;, ®;) of
possibly distinct orders k;, and with pairwise relatively prime moduli, as the com-
bination of their nil-extensions of order k = max; k;. This product is an additive
extension of the combined generator, and is determined up to an additive isomor-
phism. Any orbit in the product is eventually absorbed by the combination so that
the two generators have the same set of recurrent states, namely [], ;.
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5. A RING STRUCTURE FOR MRGS

One can introduce a ring structure in several ways in the state space of an MRG
(3, T, ®) so that the action of T} is the same as multiplication by some fixed element
of 3. The following proposition singles out one of them, and we call it the canonical
ring structure.

Proposition 7. There exists a unique ring structure on the state space of an MRG
(3,T,®) such that
(i) its underlying additive structure is the given group structure of X,
(ii) for a fized T € X, To(o) = To for o € T,
(ili) the canonical unit u is the unit element of X.
We then have T = To(u).

Proof. By Proposition 3, the mapping P(X) — P(Ty)(p) induces a group isomor-
phism

(6) Z/mZ[X]/(Pa(X)) ~ 2.

The natural ring structure of Z/mZ[X]/(Pn (X)), transferred to ¥ via (6), satisfies
the three conditions. Conversely, if ¥ has such a ring structure, then P(Ty)(u) =
P(r) for all P(X) € Z/mZ[X], and (6) is therefore a ring isomorphism. O

We notice that, in terms of the canonical ring structure, a Ty-invariant subgroup
is the same as an ideal of X, while the subgroup generated by the forward Ty-orbit
of some element in ¥ is the principal ideal generated by this element. In view of
Propositions 1 and 2 (see also Example 2), it is then of interest to have some insight
into the ideal structure of our ring X.

Example 4. Assume that the MRG (%, T, ®) has a prime power modulus m = p®.
Put p = pX. This is a principal ideal, and one has the simple filtration of = by the
principal ideals p*, i = 1,... ,e — 1. Consider the canonical mapping

(7) S-S=5/p

Let 7 be the image of 7 in ¥. Let Py (X) € F,[X] be the polynomial obtained
from Pen(X) by reducing its coefficients modulo p, and Pen(X) = [, P;’ (X) be
its factorization into irreducible polynomials. Put p; = (P;(7)), and let p; be its
inverse image by (7) in X. The ideals p; are precisely the prime ideals (they are all,
in fact, maximal) of £. More generally, any idgal of ¥ containing p is the inverse

image by (7) of an ideal of £ of the form [T, ﬁ;j » 0 <€) < ej. The set of ideals of
¥ exhibited so far is still not sufficient to account for all ideals of ¥. For instance,
if m = 4 and 7 has minimal polynomial Py(X) = X?, then () does not contain
and is not contained in p = (2). Neither is it a product of ideals containing p. A
simple situation however arises if Py(X) € F,[X] is irreducible. The ideals p¢,
e’ =1,...,e~1, are then the only proper ideals of £. Indeed, since p is then the
only maximal ideal, any element not contained in it is invertible. Let a be any ideal
of £, and p" the highest power of p containing a. Then a contains an element of
the form p"o with « € p. Since « is then invertible, we obtain a = p".

6. SHORT VECTOR SEARCH STRATEGIES

The search for short vectors in the dual lattices A(¥) to A4 is often facilitated by
the following facts, valid for arbitrary (combined) generators:
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(a) The dual lattices associated with a generator satisfy
AY 5 {0} = AD N (R x {0)).
(b) Shift invariance:
SAYD N (RS x {0})) € A,

(c) Let A be associated with a combined generator, while Agdl) and Aédz) are
associated with its components. If P;(X), P2(X) € Z[X] and if d (resp. dj,
dg) is strictly larger than the degree of Py(X)Py(X) (resp. Pi(X), P2(X)),
then P;(S)(e1) € A and Py(S)(e1) € AL imply that P, P,(S)(e1) € A,

If p : R* — R ! is the projection on the first d — 1 coordinates, then p(A4) =
Ag—1. If it is the projection on the last d — 1 coordinates, we have merely p(Ag) C
Ag4—1. These two properties imply (a) and (b) as their respective dual counterparts
while (c) follows from (a) and (b). We notice that (c) gives a limitation on the
improvement obtainable for a given random number generator by the process of
combination. Indeed, short vectors in the component lattices A(ldl) and AédQ) can be
expressed respectively as P;(S)(e1) and P,(S)(ez2), where the polynomials P;(X)
and P(X) have small coefficients. Their product P;(X)P:(X) should then also
have small coefficients, and provide a short vector Py P2(S)(e1) € AD (see the
example below). Given a basis of ‘short’ vectors for A1) (a) allows one to
‘extend’ it to a basis of A9 without increasing the length of the vectors (see
the next proposition). The extended basis can be given explicitly in case of a
subgenerator of an MRG when d exceeds its order.

Proposition 8. There exists w € AD such that, for any lattice basis wy,. .., wq_1
of A=V wy ... wy |, w is a lattice basis for A9, If, moreover, the generator
is a subgenerator of an MRG of order k, and if d > k, then one can take w =
Sk (wep,), where wey, is given by (5).

Proof. By (a), any w € A9 of minimal (positive) distance to the hyperplane R 1x
{0} will form, together with any basis of Al4~1) x {0}, a basis of A(¥). In case of a
subgenerator of an MRG, we note that, by Proposition 2, all corresponding lattices
A@ have the same volume for d > k. We further have, from Proposition 5, that
S4=k=1(1y,) € A, Since the lattice generated by this vector and A(4—1 x {0}
has the same volume as A1, and therefore as A(?| it must be equal to A4, O

In the case of an arbitrary generator, an efficient algorithm for the determination
of the vector w in the above proposition will be given in the last section.

Example 5. We consider the following two MRGs. The first is homogeneous, has
modulus m; = 2%* and characteristic polynomial X°7 4+ X% — 1. We denote by 1,
its canonical unit. The second has modulus mg = 224 — 3 (a prime), characteristic
polynomial X — 1, and is inhomogeneous with increment —7654321u9, where po
denotes its canonical unit. Their product MRG has modulus m = mims and
characteristic polynomial

X7 2 187649956511744 X% — 187649956511743 X 54 — 93824969867265.

It is thus of order 97. Let ¥ be its state space. Then X' is the state space of the
corresponding combined generator. This combined generator closely approximates
(the error is less than 3/m;) the generator proposed by Marsaglia, Zaman and
Tsang [10], which is also known as RANMAR (see [4]). We introduce on ¥ (also
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equal to Xf) the product ring structure of its components. The unit element is
u" = (p1, pe), and its ideals (each ideal in the product is the product of component
ideals; see also Example 4) are then of the form (nu"), where the parameter n is a
positive divisor of m. Table 1 gives spectral test results up to dimension d = 100, in
the form of the reciprocal of the length of the shortest non-zero vector in A(®| for
the product MRG (line [ = —1), and for the homogeneous subgenerators contained
in ¥F and satisfying the condition of Proposition 1. The latter have, as state spaces,
ideals of ¥F with parameter n = 2!, 1 =0, ...,24, and the results appear on the Ith
line. The dimension is indicated on the top line.

TABLE 1. Successive hyperplane distances for RANMAR

l d <97 d =98 d=99 d = 100
—1]1/(2* -3.2%) 1/(v2-2%%) 1/(vV2-22%) | 1/(v2-2%)
0 1/(v2-2%) | 1/((2**-3)*+18)'/2 1/v/6 1/v/6
1| 1/(v2-228) | 1/(2(2%3 = 3)2 +9)1/2 1/V6 1/V6
2| 1/(v2-2%) 1/(v2-2%) 1/v/6 1/V6
Pl/(vV2e26h 1/(v2- 22471 1/v/6 1/v6

24 1/V2 1/V2 1/V2 1/v/2

The lattices A corresponding to ¥ are described by Proposition 5. If d < 97,
the length of the shortest nonzero vector of A9 is obviously equal to m. For
d > 97, we write R? as a sum of orthogonal subspaces R¢ =V, @ Va, where V; is
generated by the set of e; which are orthogonal to wen, Swen, - - -, ¥ %Bwey (Wen is
given by (5)). This splits the lattice A(¥) and, since A/ NV, = Z¢ NV, we are
reduced to examining the lattice A(¥ N V4 with V5 of dimension 4 (resp. 8, 12) for
d = 98 (resp. 99, 100). For instance, if d = 98, we are led to the lattice in R*
generated by —93824969867265¢; — 187649956511743e, — 187649956511744e3 + ey,
mesy, mes, and mey. Thus, applying the spectral test to our product generator is
easily performed by standard algorithms (such as in [2]), at least if the dimension
is not much larger than 97. The results for this case are indicated in line [ = —1 of
the table.

For later use, we define H® C R® as the hyperplane {3, z;e;| > ;x; = 0}. Note
that the distance of 3, z;e; € R to H(@ is equal to (1/v/d)] > Tl

We now turn to the case of the combined generator (the subgenerator over ¥.* =
("), case I = 0). The lattice A(? is the intersection of the lattices A9 associated
with the two components, and described by Proposition 5 and Example 3, res-
pectively. If d < 97 it is thus equal to {m1 ), zie;|z; € Z, Y, x; =0 (mod my)}.
Since any vector in this lattice of length less than m has at least two nonzero
coordinates, the set of vectors of minimal length must be {mi(e; — ;) |7 # j}.
If d = 98, we have in A, according to (a) and (b), the vectors mi(e; — e;) for
all i # j. We also have the vector ma(—e; + egs + egg) by applying (¢) with
P (X) = X% + X5 — 1, P,(X) = mgy, and using Proposition 5 and Example 3.
From these we obtain that the following system of vectors (1 <4 < 98):

(®)

w; = ma(—e1 + ess + egs) — ma(—e1 + es5) + mi(e; — egs)

=mie; + 3(61 — eg5 — 698)
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also belongs to A(9). These happen to form a lattice basis for A(® since the equiva-
lent system mo(—e1 + egs + egs), mi(e; — e;41), ¢ = 1,...,97, has its determinant
(namely m{"my) equal to the volume of A(® (see Proposition 2). As they are
(relatively) small perturbations of the vectors mje;, it is easy to show that a lat-
tice vector of minimal length must be among them. In fact, any lattice vector
S, cow; satisfies || 3, cowi|| > (ma — 18){3; c?}!/? and, if at least two of the in-
teger coeflicients ¢; are not zero, this is larger than any of the ||w;|ls. The least
among these is computed to be (m3 + 18)}/2. If d = 99 or 100, one can again
use (c) with P;(X) = X% + X% — 1 and Py(X) = X — 1 obtaining, in A(9), the
vector e; — ey — €g5 + €66 — €98 + €99 (and also eq — es — egs + eg7 — €99 + €100
for d = 100) of length v/6. These are vectors of minimal length in A(®. Indeed,
assume for instance, that d = 99. A lattice basis for A(9) is then, by Proposi-
tion 8, ma(—e1 + egs + €9s), mi(e; —ei+1), ¢ =1,...,97, together with the vector
e1 — ey — eg5 + g — €os + egg. All these vectors are contained in the hyperplane
HO9) | with the exception of my(—e; + egs + egg) whose distance to H%, which is
equal to mg/ V99, exceeds v/6. It follows that a vector of length not exceeding v/6
can be expressed as z(e; — ez — egs + €66 — €98 + €gy) + w with an integer x # 0
(mod my), and w € my Z¢. Such a minimal length vector must therefore have at
least six nonzero coordinates, so that its length should be at least V6.

Comparing values obtained thus far (see Table 1, lines | = —1 and | = 0), we
remark that the product generator has, for d = 99 and 100, much smaller values
(maximal hyperplane distances) than its subgenerator over the set of recurrent
states. Thus, when studying the combined generator, one should beware of con-
fusing it with the product generator since the former has a much coarser lattice
structure.

The homogeneous subgenerators defined over (2'u*), 0 < I < 24, are (additively)
isomorphic to the combined generator with the same components, with the diffe-
rence that the first component now has modulus my/2!. If [ = 24, this combined
generator is degenerate since it is reduced to its second component. Its associated
lattice A(®) is described in Example 3, and has a shortest vector of length v/2 in
every dimension. So we will assume that [ < 24. If d < 98 or if d = 99 or 100,
the same arguments as for the case | = 0 show that the shortest vector in A9 has
length (m1/2")v/2 or v/6 respectively. If d = 98, we must consider separately two
cases. We first assume [ = 1,2 or 3. The argument is then similar to that used
above in case | = 0. However, one should use as a lattice basis for A(®| instead of
(8), the system (1 <7 < 98):

pL)
m
wi = ma(—er +eg + egs) —mi(—er +eqs) + -271(€¢ + ) eosn — 2'egs)
=0
my 2l —2
= 7(61 + hz—:o egs—n) + 3(e1 — egs — €gg).

We have w; = (m1/2")w} + ¢ with w, = ¢; + 22:02 €9s—h, the second term € =
3(e1 — egs — egg) being rather small compared with the first. Let w = 3, ¢;w; with
integral coefficients ¢;, and put w' = (my/2") ¥, cjw]. Then w' = (m1/2)) ¥, cle;
with ¢ = ¢; if ¢ < 100 — 2!, and ¢} = ¢; + ¥ ¢; otherwise. It follows that
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>, ci =2 c; and that
60
/ -1 / /
w—wl| <2 : < — .
I =wl <27 3Dl < 2|

The determination of the length of the shortest nonzero vector w is thus reduced to
the determination of all nonzero vectors Y c;w;, with integral ¢;, of minimal length.
This minimal length is equal to v/2 and, if { = 1 (resp. [ = 2, 3), the corresponding
vectors have at most three (resp. two) nonzero coefficients ¢; which are, moreover,
equal to =1 (notice that, if [ = 1, then the minimal length vectors ) c,w; =Y cle;
must satisfy ¢; = ¢ for all ¢ < 98, and when | > 1, ¢; = ¢ for all ¢ since then
>, ¢ =0). Finally, if { > 3, then the vector ma(—e1 + egs + egg) has its distance
to H(®8) larger than (my/2')+/2, so that a shortest nonzero-vector of A(¥) must be
in (m1/2Y)Z% N H®® and is thus of length equal to (m1/2")v/2.

7. LATTICE BASIS EXTENSION ALGORITHMS

Given a basis wy, ..., wq_1 for the lattice Al~1) associated with an arbitrary
generator (X, T, ®), it is shown in Proposition 8 that there exists a vector w € R4
such that wi,...,wqs—1,w is a lattice basis for A(4). We describe, in this section,
an (efficient) algorithm for the construction of this vector w. Let M C (R/Z)? be
the subgroup generated by all differences of elements of ®(®)(X). The algorithm
assumes given any convenient generating system for M.

Example 6. Let (X,T,®) be an MRG of order k, canonical unit x, and put 7 =
To(u). Consider the subgenerator of this MRG, defined over the T-orbit of o € £,
and its associated group M. By Proposition 2 and Example 2, M is the image under
<I>(()d) of the subgroup generated by the forward Ty-orbit of of, = Ta(0p). In terms
of the canonical ring structure for the MRG, this subgroup is the ideal generated
by o(. We see therefore that M is generated by the image under <I>éd) of the set
oby...,obt*"1. Similarly, this time using Example 1, the group M corresponding
to the subgenerator defined over L' is the image under <I>(()d) of the ideal generated
by a sufficiently high power 7' so that (r'+!') = (7!). This is certainly satisfied if
2! > m*, m being the modulus of the MRG. In this case, the group M is generated
by the image under @ of the set 7!,...,7i*F-1,

Let m be an integer such that mM = 0, so that M is an A-module where
A=17Z/mZ. Forv € M define ¢;(v) € A as the ith coordinate of v (defined modulo
1) multiplied by m. This gives a system of A-linear forms ¢1,... ,¢q € M* which
is complete in the sense that, if ¢;(v) = 0 for all 4, then v = 0.

The main step of the algorithm is to transform the given generating system into
a system of vectors v1,... ,vq € M with the following properties:

(i) ¢j(vi) =01ifi > j,

(ii) ¢j (’Uj) =0 implies v = 0,
(ili) v € M and ¢i(v) = 0 for all | < j imply v € 3,5 ; A,
(iv) #;(v;) has a representative which divides m.

For this, we recursively construct d other systems (which may not generate M)
as follows. Let u1,... ,u; be the jth system (the first system is the given generating
system). If ¢;(u;) = 0 for all 4, we put v; = 0, and take the (j 4+ 1)st system to
be identical to the jth. Otherwise, let a be the (nonzero) ideal of A generated by
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the elements ¢;(u;),7 = 1,...,l, and construct u},...,u;, ,, generating the same
submodule as the jth system, such that ¢;(u}) = 0 for all ¢« < [ + 1, and such
that ¢(u;, ) generates the ideal a. This is done by using the Euclidean algorithm
to determine aq,...,q; and b1,... ,b € A such that a = a1d(ur) + -+ - + a;(w;)
generates a, and ¢(u;) = b;a for all i < [+ 1; then take uj,; = ajus +---+a;u and
uj = u; — byuy, for i <14 1. Finally, put v; = uj,, and take the (j + 1)st system
to be vl,...,v],a0v, |, where aq is a generator for the ideal {y € Aly®;(u;,,) = 0}.
We now verify the first three properties for the system vy, ... ,v4. One can easily
verify, by induction on 7, that if u belongs to the jth system as above, then ¢;(u) = 0
for I < j and, since v; is chosen in the submodule generated by the jth system,
we also have ¢;(v;) = 0. This proves the first property. The second is immediate
from the construction. To prove the third, notice that v;,...,vq generate the same
submodule as the jth system. In particular, vq,...,vq generate M. Any v € M
can therefore be written as v = ), a;v;. Choose, among such expressions, that for
which the index of the first nonzero coefficient is maximal. If this index is jp < j,
and if ¢;(v) = 0 for [ < j, we have aj,¢;,(vj,) = 0 and, by construction, a;,v;,
belongs to the submodule generated by the (jo + 1)st system, contradicting the
maximality property jo. Finally, one can achieve property (iv) by multiplying v;
by a suitable invertible element of A. This does not affect the validity of (i)-(iii).

Proposition 9. If vy,...,vq € M satisfy the above properties (i)—(iv), then any
set of vectors U1,...,04 € RY satisfying

(i) can(v;) = v; and the first i — 1 coordinates of v; are 0,
(ii) if v; # 0, then the ith coordinate of U; is the inverse of an integer,
(111) lf V; = 0, then V; = e;,

1s a lattice basis for the inverse image of M (and therefore for Ag) by the mapping

(1).

Proof. Tt is sufficient to show that Z¢ is contained in the subgroup generated by the
v;’s. We show recursively that e; is in the subgroup generated by s, . ..,74. This is
clear for ¢ = d or if v; = 0. Assume the fact true for 1+ 1, and v; # 0. By (ii) there
is an integer ¢; such that the ith coordinate of ¥ = e; — c¥; is zero. If v = can(?),
then ¢;(v) = 0if j < i so that v € >, ; Avu (see the proposition above, item
(iii)). This implies that ¥ belongs to the subgroup generated by ¥;41,...,74 and
Z2. From our assumption for i + 1, ¥ actually belongs to the subgroup generated
by ¥it1,...,0q since all these vectors (including ¥) have their first ¢ coordinates
equal to zero. We conclude that e; = 7 + ct; belongs to the subgroup generated by
Viyonny V4. ]

Any choice of a basis v1,...,7, for Ay satisfying the conditions in the above
proposition can then be used to determine a vector w by the conditions v; - w =0
for i < d and U4 - w = 1. This is the sought for vector since it clearly belongs to
A and it generates, with A(®~1) x {0}, a lattice of the same volume as A(?,
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