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ORBITS AND LATTICES 
FOR LINEAR RANDOM NUMBER GENERATORS 

WITH COMPOSITE MODULI 

RAYMOND COUTURE AND PIERRE L'ECUYER 

ABSTRACT. In order to analyze certain types of combinations of multiple recur- 
sive linear congruential generators (MRGs), we introduce a generalized spectral 
test. We show how to apply the test in large dimensions by a recursive pro- 
cedure based on the fact that such combinations are subgenerators of other 
MRGs with composite moduli. We illustrate this with the well-known RAN- 
MAR generator. We also design an algorithm generalizing the procedure to 
arbitrary random number generators. 

1. INTRODUCTION 

The structure of a (uniform) random number generator generally consists of a 
finite state space Z, together with a transition mapping 

T : E, E- 

determining the evolution of the system, and an output mapping 

D: E- Q/Z. 

Starting from an arbitrary seed uo E Z, this generator produces a sequence 

4?(T'(o-o)) E Q/Z, i = 0,1,... 

of pseudorandom numbers. One can associate with such a system (E, T, 4d), and 
each positive integer d, a lattice Ad in Rd as follows. First, we define the mapping 

@(d) E (R/Z)d by 

(D(d) (f) (u(f), (D(T(f) . .D(T d 1f)) 

We then define Ad C Rd as the inverse image, by the canonical mapping 

(1) can: Rd (R/Z)d, 

of the subgroup of (R/Z)d generated by all differences between any two elements 
of @(d)(E). The structure of the lattice Ad is indicative of the distribution of the 
set of all (overlapping) d-tuples of successive values of the generator. Determining 
the length of the shortest vector of the dual lattice A(d) to Ad, the so-called spectral 
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test, gives significant insight into this structure and the distribution properties of 
the corresponding generator [3, 5, 8]. 

However, if the action of T on E is not transitive, that is, if there exists some 
T-invariant, proper subset Z' C E, such a subset also defines a (sub)generator 
(Z', TIE,, 4I,), and one can, as above, consider its associated lattices Ad. These 
will be contained, strictly in general, in the corresponding lattices defined by E. 
The question of the relative significance of the various lattices arises. In particular, 
if T is not one-to-one, then T(E), T2(),... is a decreasing sequence of T-invariant 
subsets, ending with n Ti(Z), which is especially interesting, since it is precisely the 
set Er of recurrent states. If this set quickly attracts into it an arbitrary state, then 
the lattices associated with zr are more relevant to the behavior of the generator 
than those associated with E. 

We will discuss this question for the class, defined in ?3, of multiple recursive 
linear congruential random number generators (MRGs) with respect to an arbitrary 
modulus. As the linear generators considered are not assumed homogeneous, we 
show in ?2 how their study can be reduced to that of corresponding homogeneous 
generators. Combination, as defined in ?4, is a standard construction in the design 
of random number generators [6, 12]. Although the combination of MRGs is, in 
general, not a MRG, it is shown there that, in case of relatively prime moduli, 
it is a subgenerator of another MRG with modulus equal to the product of the 
component moduli, and which we will call their product MRG. One can then study 
the combined generator through this MRG since, in general, for any subgenerator 
of an MRG, there is a simple way to take advantage, in the task of determining 
the short vectors in (d), of the solution of the corresponding lower-dimensional 
problem (see [5, 8] for the case of LCGs). This is generalized to the case of arbitrary 
generators by means of the algorithms described in ?7. We illustrate, in ?6, our 
discussion with a well-known generator proposed by Marsaglia, Zaman, and Tsang 
[10], usually designated by RANMAR. Some general principles, which indicate a 
precise limitation on the possible improvement obtained using combination, are 
applied to determine, in this instance, a shortest vector in A(d) for d up to 100. 

We will use the following terminology. An isomorphism between the two ge- 
nerators (1,T1,41I ) and (Z2,T2,4 2) is a one-to-one mapping f: Ei r Z2 such 
that T2 o f = f o T1, and (DI = (D2 o f. All properties of interest to us are invariant 
under such an isomorphism. For instance, the associated lattices Ad are identical. If 
the state spaces have the additional structure of an abelian group, we will say that 
the isomorphism is additive if it preserves the group law. We recall that the volume 
of a lattice is the volume of the parallelepiped generated by one of its bases. For 
a vector v C Rd we denote by v- the vector in Rd+I obtained from v by adding a 
zero coordinate. We will denote by e, i = 1, ... , d, the canonical basis for Rd so 
that e7 Li! and by S the (linear) right-shift on Rd defined by S(e.) = e.+, 
i=l,...d - 1and S(ed) = 0 

2. ADDITIVE GENERATORS 

We will say that a generator (Z, T, 4) is additive if its state space E has the 
additional structure of an abelian group (we will write its law additively), and if 
the transformation 

T'0 -E ) E 
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defined by To(u) = T(u) - T(O), as well as the output mapping 4D, is a group 
homomorphism. The generator (, To, (4) is the corresponding homogeneous ge- 
nerator (also additive), and we refer to T(O) as the increment. More generally, if 
Z' C E is T-invariant (though not necessarily a subgroup), and therefore defining a 
subgenerator, then the subgroup %0 generated by the set of differences gl -2 with 
u1i,2 C /, is To-invariant and defines a corresponding homogeneous subgenerator 
(that is, a subgenerator of (E, To, 4) given by a subgroup of Z). It will be seen, 
in this section, how the study of an additive generator, and its subgenerators, 
with their associated lattices, is reduced to the homogeneous case. Homogeneous 
subgenerators will be characterized algebraically in ?5. 

Example 1. The set zr of recurrent states of an additive generator (Z, T, 4) is 
obviously T-invariant, and the corresponding homogeneous subgenerator is defined 
by the subgroup Z0 of recurrent states with respect to To. Indeed, if ul, 52 C zr 

and n is a common multiple of their periods, then To' (ul-2) = T n (u) -Tn(u2) - 

1- 92, SO 91- 2 C Eo. Conversely, if u C Zo and U2 C Zr, then T (u + J2) 

Ton (u) + Tn(u2), and this is u + u2 if n is a common multiple of the periods of u 
and U2 (relative to To and T, respectively). We thus obtain g + 92 C . 

Consider the mapping (not necessarily one-to-one) TA E > E defined by 
TA (c) = T(u) - u. Then clearly, 

(2) T\')c0. 
Lemma 1. The mapping T,A transforms T into To, that is, we have 

TA o T To o TA. 

Proof. For u C E we have TA o T(u) T2(u) - T(u) = To o T(u) - To(u) 
To o TAk (J)). D 

Example 2. If Z' is the forward T-orbit of uo then, by Lemma 1, T,zN(') is the 
forward To-orbit of TA(uo). Therefore, in this case, %0 is equal to the subgroup 
generated by TA (Z') since it is, from its definition, generated by the differences 
Tn(go) n-l (go) = Ton-l(T\' (go)). 

In general, not every homogeneous subgenerator arises in this way as a Z/ for 
some T-invariant subset Z'. We have 

Proposition 1. A To-invariant subgroup of E is of the form E/ for some T- 
invariant subset Z' of E if and only if it has a nonvoid intersection with TA (E). 

Proof. By (2), the condition is clearly necessary. Conversely, assume E1 is a To- 
invariant subgroup and that T,A (v') C E1. Put Z' = ' + E1. Then Z' is T-invariant 
since T(c' + u1) =cl + TA(ul) + To(ul) C Z' for ul C E1 and o = 1. D 

If, for instance, T is a translation, so that T,A -T(O), then the condition on 
the To-invariant subgroup is that it should contain T(O), that is, it should also be 
T-invariant. 

We define 0(d) E -> (R/Z)d by 

q(O d)((T) = (q (gf)) (D (To(f) d I>T f)) 

Proposition 2. A subgenerator of an additive generator, and its corresponding 
homogeneous subgenerator, have identical associated lattices Ad and A(d). The vo- 
lume of A(d) is given by the order of the image, by 4D d), of the state space of the 
homogeneous subgenerator. 
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Proof. For any T-invariant subset Z', od)(Z'o) is the subgroup generated by all 
differences of pairs of elements of 4?(d)(E'), and the first statement follows. The 
order of ()d)(E) is equal to the index [Ad: Zd], which is equal to the reciprocal of 
the volume of Ad. It is thus equal to the volume of A(d). D 

Example 3. Assume that T is a translation and that 4(S) has exponent m. Then 

4Do )E) is the subgroup of elements of ((l/m)Z/Z)d with identical coordinates. 
The lattice Ad is therefore the set of vectors 1/m Ei xiei with integral xi such that 
xi _ xj (mod m), and its dual A(d) is the set of vectors Ei xiei with integral xi 
such that El xi-O0 (mod n). 

3. MULTIPLE RECURSIVE LINEAR CONGRUENTIAL GENERATORS 

We now consider a special class of additive generators, namely the multiple 
recursive (inhomogeneous) linear congruential generators (MRG for short) which 
can be defined as follows. Call a group an f-group if it is finite, abelian and, m 
being its exponent, if it admits a basis as a Z/mZ-module. 

Definition 1. An additive generator (E, T, 1b) is called an MRG if the state space 
E is an f-group and the output mapping 4) is generic in the sense that its kernel 
contains no nonzero forward To-orbit. 

The modulus (resp. order) of a given MRG, (E, T, 4>), is the exponent (resp. rank) 
of S. If m is the modulus and k the order, then the mapping (<>k) is one-to-one 

with image 4ok) (E) ((1/m)Z/Z)k. Therefore, there exists a state ,t C Z, uniquely 
determined by the conditions 

(3) (D(T0i-l(,))=(1/Tn)6ik) i=1, ...,)k. 

We refer to ,u as the canonical unit of the MRG. We also refer to the (monic) 
characteristic polynomial Pch(X) C Z/mZ[X] of To as the characteristic polynomial 
of the generaror. Clearly, a Z/mZ-basis for E is given by ,) To(At), ... ,T k 1 

Proposition 3. For an MRG (E, T, b) with modulus m and characteristic polyno- 
mial Pch(X), the following conditions on P(X) C Z/mZ[XI, are equivalent: 

(i) P(To) _0, = O 

(ii) P(To) = 0, 
(iii) PCh(X) divides P(X). 

In particular, PCh(X) is also the minimal polynomial of To. 

Proof. We have PCh(To) = 0 by the Hamilton-Cayley theorem. If Pch(X) divides 
P(X), then clearly P(To) 0, and P(To)(ft) = 0. Assume, conversely, that 

P(To)([t) = 0. Then P(To) 0 since an arbitrary element of C E can be expressed 
as of = Pi(To)(Q) for some Pi(X) C Z/mZ[X], and P(To)(cr) = Pi(To)P(To)(p) = 
0. The Euclidean algorithm provides us with polynomials Q(X), R(X) c Z/mZ[X] 
such that R(X) has degree less than the order, and P(X) = Pch(X)Q(X) + R(X). 
It follows that R(To)(ft) = 0, so that R(X) = 0, and Pch(X) divides P(X). I 

Proposition 4. Two additively isomorphic MRGs have the same modulus and 
characteristic polynomial. Further, there is at most one additive isomorphism bet- 
ween them and their canonical units correspond under it. A homogeneous MRG 
is determined up to an additive isomorphism by its modulus and its characteristic 
polynomial. 
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Proof. Consider the MRGs (E1, T1, (1i) and (Z2, T2, 42), with respective canonical 
units btl and b2. Assume there is an additive isomorphism f: Zi -i 2 between 
them. Clearly E1 and Z2 then have the same exponent. We also have T2 of = f oTi, 
so that T2 (0) = f (Ti (0)), and 

(4) T2,0of=foTf1,o 

The first statement in the proposition follows. Since (2 o f = (1, we obtain, using 

(4), @(k) o f = b(k) k being the order. It follows that f(-tl) = A2 and, again 
using (4), that f (T,o (G1u)) = T2,o(u2) for 1 < i < k. The second statement follows. 
Assume now that the two generators are homogeneous with the same modulus 
m and same characteristic polynomial Pch(X). Since, by Proposition 3, we have 
for P(X) c Z/mZ[X] that P(Ti)(-ti) = 0 (resp. P(T2)(bt2) = 0) if and only if 
Pch(X)jP(X), the correspondence P(Ti)(1ti) i- P(T2)>(42) is well defined, and is 
the required isomorphism between the two generators. D 

If we lift the characteristic polynomial Pch(X) of an MRG (E, T, 41) to a monic 
polynomial Xk - aiXk-l _-* - ak C Z[X], and put 

b = 4(T k(O) -aT kT(O) - . - akT (O)), 

the output sequence ui =I?(T2(uo)) c Q/Z, i = 0,1, ..., will satisfy the recurrence 

ui =alui- +- + akUi-k+b, i>k. 

In fact, ui and b belong to (1/m)Z/Z if m is the modulus of the MRG, and our 
generator is essentially identical to a multiple recursive (inhomogeneous) linear 
congruential generator as defined, for instance, in [3, 6, 7, 11] for the (arbitrary) 
modulus m. 

It follows from Propositions 2 and 4 that the lattices Ad and A(d) associated 
with an MRG are determined by its modulus and characteristic polynomial. In 
particular, if we put, for d > k, 

(5) Wch =-akel - -alek + k+1, 

we have the following. 

Proposition 5. If d < k, then A(d) = mZd. If d > k, then A(d) admits the lattice 
basis me,.1.. ,mekwch,SWch, * Wch 

Proof. Since 4) is generic, @(d ) is the subgroup ((l/m)Z/Z)d when d < k, and 
has order equal to mk for d > k. The first statement follows. Assume d > k. 
By Proposition 2, A(d) has volume equal to mk and, since the proposed vectors 
clearly belong to A(d) and generate a lattice also of volume ink, this lattice must 
be A(d) 

4. PRODUCTS AND EXTENSIONS OF MRGs 

From a given finite family of generators ('i, Ti, 4(i) one may form the combined 
generator (Hli Zi, Hli Ti, 4) where )((ui) ) = 4i Di(ui). (Other combination me- 
thods have been used in actual implementations [1, 6, 91 but they are often well 
approximated by combinations in the above sense.) The lattices Ad (resp. A(d)) 
associated with a combination are the sum (resp. intersection) of those associated 
with the components. 
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The combination of MRGs of the same order, and with pairwise relatively prime 
moduli, is again an MRG. Its modulus m is the product of the component mo- 
duli m-, and its characteristic polynomial Pch(X) is determined by the conditions 
Pch(X) Pch. (X) (mod ni), where Pch,-(X) are the component characteristic 
polynomials. More generally, if the orders ki are not all equal, it would seem 
natural to consider an MRG of order k = maxi k- with a characteristic polynomial 
Pch(X) satisfying Pcl,(X) Xk-kiPch,t(X) (mod mi). However, the state space of 
such an MRG has a cardinality larger than that of the combined generator, and 
the question arises of determining the exact relation between these two generators. 
This can be done by introducing the notion of a nil-extension of MRGs. 

An extension of a given generator (E, T, 4?) is a generator (E, T, 4?) with E C Z, 
and such that T = T and ? = 4 over E. When both generators are additive, we will 
say that the extension is additive if E is a subgroup of S. The increments T(O) and 
T(O) are then equal and contained in E. In case of two MRGs with equal moduli, 
an extension will be called a nil-extension if it is additive and if any T0-orbit in Z 
eventually ends up in E. 

Lemma 2. Assume that (E, T, I?) is a nil-extension of (E, T, 4?). Let k, Pch(X), X , 
and k, Pch(X), 8t be their respective order, characteristic polynomial, and canonical 
unit. If the integer i is sufficiently large, so that To(S) c E, then i > k - k. If 

(E) C E, then PCh(X) - xkkpch(X), and To (/i) = A 

Proof. Assume To(E) c E with i < k - k. Then To(-t) E E is not 0, but 
4?(TO?+ji)) - 0 for 0 < j < k, contradicting the genericity of 4?. 

If T k(E) C E then, by Proposition 3, we have Pch(X) XkkPch(X). Since 
the two polynomials are monic and of the saine degree, they are equal. To prove the 
last statement it is sufficient to remark that Tokk (i) c E satisfies the conditions 
(3) defining,. At 

If a nil-extension satisfies (with the above notations) Tk-k(Z) C , we will say 
it is minimal. 

Proposition 6. An MRG of order k admits a unique (up to an additive isomor- 
phism) minimal nil-extension of order k' for each integer k' > k. 

Proof. Let (E, T, 4?) be the given generator, m its modulus and At its canonical 
unit. Embed E as a direct factor in an f-group Y of rank k and exponent m. 
Choose a supplement E' C E to YE (so that E YE e YE'), and choose a Z/mZ-basis. 
Al, 1 -tk-k for E'. Define T: YE -* E so that its restriction to E is equal to 
T, and such that To is a homomorphism satisfying the conditions To(Ai) = Az+1, 
i = 1,..., k-k-1, and To(tk-k) = t. Define 4 to be equal to on E, and 0 on 
YE'. Then (E, T, 4?) is the required extension. Two nil-extensions of the same order 
are (additively) isomorphic by Proposition 4 and the preceding lemma. - D1 

We can now define the product MRG of a finite family of MRGs (Yi, Ti, 4(i) of 
possibly distinct orders ki, and with pairwise relatively prime moduli, as the com- 
bination of their nil-extensions of order k = maxi ki. This product is an additive 
extension of the combined generator, and is determined up to an additive isomor- 
phism. Any orbit in the product is eventually absorbed by the combination so that 
the two generators have the same set of recurrent states, namely H2 Y. 
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5. A RING STRUCTURE FOR MRGs 

One can introduce a ring structure in several ways in the state space of an MRG 
(E, T, (D) so that the action of To is the same as multiplication by some fixed element 
of E. The following proposition singles out one of them, and we call it the canonical 
ring structure. 

Proposition 7. There exists a unique ring structure on the state space of an MRG 
(E, T, 4) such that 

(i) its underlying additive structure is the given group structure of E, 
(ii) for a fixed r E E, To(a) = ir for aE E, 

(iii) the canonical unit /t is the unit element of E. 
We then have T = To((p). 

Proof. By Proposition 3, the mapping P(X) 4 P(To)(p) induces a group isomor- 
phism 

(6) Z/mZ[X]j(Pch(X)) ' E- 

The natural ring structure of Z/mZ[X]/(Phil(X)), transferred to E via (6), satisfies 
the three conditions. Conversely, if E has such a ring structure, then P(To)Gu) = 

P(r) for all P(X) E Z/mZ[X], and (6) is therefore a ring isomorphism. D 

We notice that, in terms of the canonical ring structure, a To-invariant subgroup 
is the same as an ideal of E, while the subgroup generated by the forward To-orbit 
of some element in E is the principal ideal generated by this element. In view of 
Propositions 1 and 2 (see also Example 2), it is then of interest to have some insight 
into the ideal structure of our ring E. 

Example 4. Assume that the MRG (E, T, O) has a prime power modulus m = p'. 
Put p = pE. This is a principal ideal, and one has the simple filtration of E by the 
principal ideals pi, i = 1, ... , e - 1. Consider the canonical mapping 

(7) =/p. 
Let r be the image of r in 2. Let Pch(X) E Fp[X] be the polynomial obtained 
from Peh(X) by reducing its coefficients modulo p, and Pch(X) = HJ (X) be 
its factorization into irreducible polynomials. Put fj = (Pj (r)), and let pj be its 
inverse image by (7) in E. The ideals pj are precisely the prime ideals (they are all, 
in fact, maximal) of E. More generally, any ideal of E containing p is the inverse 

image by (7) of an ideal of E of the form flj Fjl, 0 < e; < ej. The set of ideals of 
E exhibited so far is still not sufficient to account for all ideals of >. For instance, 
if m = 4 and r has minimal polynomial Po (X) = X2, then (Tr) does not contain 
and is not contained in p = (2). Neither is it a product of ideals containing p. A 
simple situation however arises if Po(X) E Fp[X] is irreducible. The ideals pl , 
e = 1, . . . , e - 1, are then the only proper ideals of E. Indeed, since p is then the 
only maximal ideal, any element not contained in it is invertible. Let a be any ideal 
of E, and pl the highest power of p containing a. Then a contains an element of 
the form pnac with aU 0 p. Since ca is then invertible, we obtain a = pn. 

6. SHORT VECTOR SEARCH STRATEGIES 

The-search for short vectors in the dual lattices A(d) to Ad is often facilitated by 
the following facts, valid for arbitrary (combined) generators: 
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(a) The dual lattices associated with a generator satisfy 

A(d-1) x {o} = (d) n (Rd-i X {O}). 

(b) Shift invariance: 

S(A(d) n (Rd x {O})) C A(d) 

(c) Let A(d) be associated with a combined generator, while A(d1) and A(d2) are 
associated with its components. If P1(X), P2(X) E Z[X] and if d (resp. d1, 
d2) is strictly larger than the degree of Pi(X)P2(X) (resp. Pi(X), P2(X)), 
then Pi (S) (el) c A( l) and P2 (S) (el) c A imply that PiP 2 (S) (el) E A(d). 

If p : Rd Rd-l is the projection on the first d - 1 coordinates, then p(Ad) 
Ad-l- If it is the projection on the last d - 1 coordinates, we have merely p(Ad) C 

Ad-i. These two properties imply (a) and (b) as their respective dual counterparts 
while (c) follows from (a) and (b). We notice that (c) gives a limitation on the 
improvement obtainable for a given random number generator by the process of 
combination. Indeed, short vectors in the component lattices A (di ) and A(d2) can be 
expressed respectively as Pi(S)(ei) and P2(S)(e2), where the polynomials Pi(X) 
and P2(X) have small coefficients. Their product Pi(X)P2(X) should then also 
have small coefficients, and provide a short vector PlP2(S)(el) E A(d) (see the 
example below). Given a basis of 'short' vectors for A(d-1), (a) allows one to 
'extend' it to a basis of A(d) without increasing the length of the vectors (see 
the next proposition). The extended basis can be given explicitly in case of a 
subgenerator of an MRG when d exceeds its order. 

Proposition 8. There exists w C A(d) such that, for any lattice basis W1l... ,Wd-1 

of A(d-l), wy,... ,w_1, w is a lattice basis for A(d). If, moreover, the generator 
is a subgenerator of an MRG of order k, and if d > k, then one can take w = 
Sd-k l(wCh), where Wch is given by (5). 

Proof. By (a), any w E A(d) of minimal (positive) distance to the hyperplane Rdi x 
{O} will form, together with any basis of A(di) x {O}, a basis of A(d). In case of a 
subgenerator of an MRG, we note that, by Proposition 2, all corresponding lattices 
A(d) have the same volume for d > k. We further have, from Proposition 5, that 
Sd-k-i(WCh) E A(d). Since the lattice generated by this vector and A(d-1) X {O} 
has the same volume as A(d-), and therefore as A(d), it must be equal to A(d). o 

In the case of an arbitrary generator, an efficient algorithm for the determination 
of the vector w in the above proposition will be given in the last section. 

Example 5. We consider the following two MRGs. The first is homogeneous, has 
modulus ml = 224 and characteristic polynomial X97 + X64 _ 1. We denote by ,pi 
its canonical unit. The second has modulus m2 = 224 - 3 (a prime), characteristic 
polynomial X - 1, and is inhomogeneous with increment -7654321,u2, where u2 
denotes its canonical unit. Their product MRG has modulus m = mim2 and 
characteristic polynomial 

X97 187649956511744 X96 _ 187649956511743 X64 _ 93824969867265. 

It is thus of order 97. Let Z be its state space. Then zr is the state space of the 
corresponding combined generator. This combined generator closely approximates 
(the error is less than 3/mi) the generator proposed by Marsaglia, Zaman and 
Tsang [10], which is also known as RANMAR (see [4]). We introduce on Er (also 
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equal to Z0) the product ring structure of its components. The unit element is 
pr = (Pl P2), and its ideals (each ideal in the product is the product of component 
ideals; see also Example 4) are then of the form (n,r), where the parameter n is a 
positive divisor of m. Table 1 gives spectral test results up to dimension d = 100, in 
the form of the reciprocal of the length of the shortest non-zero vector in A(d), for 
the product MRG (line 1 -1), and for the homogeneous subgenerators contained 
in zr and satisfying the condition of Proposition 1. The latter have, as state spaces, 
ideals of Er with parameter n = 21, 1 = O, . . ., 24, and the results appear on the lth 
line. The dimension is indicated on the top line. 

TABLE 1. Successive hyperplane distances for RANMAR 

1 d <<97 d =98 d = 99 d = 100 

-1 1/(248 3 . 224) 1/(v'2 224) 1/(V' * 224) 1/(V' * 224) 

0 1/(X2-. 224) 1/((224 - 3)2 + 18)1/2 1/4 VI 6 

1 1/(*'2 223) 1/(2(223 - 3)2 + 9)1/2 1/4 VI 6 

2 1/(X'~. 222) 1/( 222) l/4 1/6 

. 1 224-1) 1/( 224-1) 1/6 1/6 
24 1/V'I 1/V 1/ IV 

The lattices A(d) corresponding to E are described by Proposition 5. If d < 97, 
the length of the shortest nonzero vector of A(d) is obviously equal to m. For 
d > 97, we write Rd as a sum of orthogonal subspaces Rd = V1 e V2, where V1 is 
generated by the set of ei which are orthogonal to Wch, SWCh, ... I Sd-98wCh (wCh is 
given by (5)). This splits the lattice A(d) and, since A(d) n,V, = Zd n V1, we are 
reduced to examining the lattice A(d) n V2 with V2 of dimension 4 (resp. 8, 12) for 
d = 98 (resp. 99, 100). For instance, if d = 98, we are led to the lattice in R4 
generated by -93824969867265e1 - 187649956511743e2 - 187649956511744e3 + e4, 
me2, me3, and me4. Thus, applying the spectral test to our product generator is 
easily performed by standard algorithms (such as in [2]), at least if the dimension 
is not much larger than 97. The results for this case are indicated in line 1 =-1 of 
the table. 

For later use, we define H(d) C Rd as the hyperplane {> x e2j >1 x 0 }. Note 
that the distance of Ei xiei E Rd to H(d) is equal to (1/ d)1 >j xi. 

We now turn to the case of the combined generator (the subgenerator over Er 

case 1 = 0). The lattice A(d) is the intersection of the lattices A(d) associated 
with the two components, and described by Proposition 5 and Example 3, res- 
pectively. If d < 97 it is thus equal to {mi 2 xie I xi E Z, Ei xi 0 (mod m2)}. 
Since any vector in this lattice of length less than m has at least two nonzero 
coordinates, the set of vectors of minimal length must be {ml (ei - ej) i + j}. 
If d 98, we have in A(d), according to (a) and (b), the vectors ml(ei - ej) for 
all i ' j. We also have the vector m2(-e1 + e65 + e98) by applying (c) with 
P1(X) = X97 + X64 _ 1, P2(X) = M2, and using Proposition 5 and Example 3. 
From these we obtain that the following system of vectors (1 < i < 98): 

(8) Wi = 
m2(-e1 + e65 + e98) - ml(-el + e65) + ml(ei - e98) 

- mie- + 3(e1 - C65 -98) 
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also belongs to A(d). These happen to form a lattice basis for A(d) since the equiva- 
lent system m2 (-el + e65 + e9s), ml (e - ei+l), i = 1, . . ., 97, has its determinant 
(namely m97m2) equal to the volume of A(d) (see Proposition 2). As they are 
(relatively) small perturbations of the vectors mlei, it is easy to show that a lat- 
tice vector of minimal length must be among them. In fact, any lattice vector 

ciwi satisfies fl , ciwifl > (ml - 18){ C2 c}1/2 and, if at least two of the in- 
teger coefficients c? are not zero, this is larger than any of the flw lls. The least 
among these is computed to be (m2 + 18)1/2. If d = 99 or 100, one can again 
use (c) with PI(X) = X97 + X64 - 1 and P2(X) = X - 1 obtaining, in A(d), the 
vector el - e2 - e65 + e66 - e9s + e99 (and also e2 - e3 - e66 + e67 - e99 + eioo 
for d = 100) of length v/6. These are vectors of minimal length in A(d). Indeed, 
assume for instance, that d = 99. A lattice basis for A(d) is then, by Proposi- 
tion 8, m2(-el + e65 + e98), mi(ei - ei+), i = 1, ... ,97, together with the vector 
el - e2 - e65 + e66 - e98 + egg. All these vectors are contained in the hyperplane 
H(99), with the exception of m2(-el + e65 + e98) whose distance to H(99), which is 
equal to m2/v/9, exceeds 6. It follows that a vector of length not exceeding d/6 
can be expressed as x(ei - e2 - e65 + e66 - e98 + e99) + w with an integer x 0 0 
(mod ml), and w E miZd. Such a minimal length vector must therefore have at 
least six nonzero coordinates, so that its length should be at least v'6. 

Comparing values obtained thus far (see Table 1, lines 1 = -1 and 1 = 0), we 
remark that the product generator has, for d = 99 and 100, much smaller values 
(maximal hyperplane distances) than its subgenerator over the set of recurrent 
states. Thus, when studying the combined generator, one should beware of con- 
fusing it with the product generator since the former has a much coarser lattice 
structure. 

The homogeneous subgenerators defined over (21pz'), 0 < 1 < 24, are (additively) 
isomorphic to the combined generator with the same components, with the diffe- 
rence that the first component now has modulus mi/21. If 1 = 24, this combined 
generator is degenerate since it is reduced to its second component. Its associated 
lattice A(d) is described in Example 3, and has a shortest vector of length VX_ in 
every dimension. So we will assume that 1 < 24. If d < 98 or if d = 99 or 100, 
the same arguments as for the case 1 = 0 show that the shortest vector in A(d) has 
length (ml/21)V2- or 6 respectively. If d = 98, we must consider separately two 
cases. We first assume 1 = 1, 2 or 3. The argument is then similar to that used 
above in case 1 = 0. However, one should use as a lattice basis for A(d), instead of 
(8), the system (1 < i < 98): 

Wi 
'Ml 

- 21e98)~~~~~~~~~~~~2 _ 
= m2(-el + e65 + e98) - ml(-el + e65) + Tl (ei + E 98h 0 2198) 

h=Q 

2'= 2 
Ml=eY + 98=h) + 3(ei - e65 - e98). 

T,(e i + _E 
h 0 

We have wi = (ml /21)w' 4- e with w = e + h==02 e98h, the second term e = 

3(ei - e5 - e98) being rather small compared with the first. Let w = , ciwi with 
integral coefficients ci, and put w' = (mi/21) E, cjw$. Then w' = (ml/21) Jj c5 e 
with c' = c? if i < 100 - 21, and c = c? + E cj otherwise. It follows that 



ORBITS AND LATTICES 199 

Ei ct = 21 Ei ci and that 

iiw - w'll < 2- c' I 11_11 <60-llw' 

The determination of the length of the shortest nonzero vector w is thus reduced to 
the determination of all nonzero vectors E ciw', with integral ci, of minimal length. 
This minimal length is equal to VX and, if 1 = 1 (resp. 1 = 2,3), the corresponding 
vectors have at most three (resp. two) nonzero coefficients ci which are, moreover, 
equal to ?1 (notice that, if 1 = 1, then the minimal length vectors E ciw = ECei 
must satisfy ci = c' for all i < 98, and when 1 > 1, ci = c' for all i since then 
Ei ci = 0). Finally, if 1 > 3, then the vector m2(-el + e65 + e98) has its distance 
to H(98) larger than (ml/21)V2-, so that a shortest nonzero vector of A(d) must be 
in (ml /21) Zd n H(98) and is thus of length equal to (ml /21) V_. 

7. LATTICE BASIS EXTENSION ALGORITHMS 

Given a basis W1,... , Wd_ for the lattice A(d-1) associated with an arbitrary 
generator (E, T, 41), it is shown in Proposition 8 that there exists a vector w E Rd 
such that WI,... ,wd1, w is a lattice basis for A(d). We describe, in this section, 
an (efficient) algorithm for the construction of this vector w. Let M c (R/Z)d be 
the subgroup generated by all differences of elements of @(d) (E). The algorithm 
assumes given any convenient generating system for M. 

Example 6. Let (E, T, 41) be an MRG of order k, canonical unit ,u, and put r = 

ToQ(i). Consider the subgenerator of this MRG, defined over the T-orbit of :o E Z, 
and its associated group M. By Proposition 2 and Example 2, M is the image under 

d(d) of the subgroup generated by the forward To-orbit of o- = TA(0o). In terms 
of the canonical ring structure for the MRG, this subgroup is the ideal generated 
by or'. We see therefore that M is generated by the image under 4(d) of the set 
0 , 70 t1. Similarly, this time using Example 1, the group M corresponding 
to the subgenerator defined over Er is the image under b(d) of the ideal generated 
by a sufficiently high power ri so that (r+1) - (r'). This is certainly satisfied if 
2' > Mk, m being the modulus of the MRG. In this case, the group M is generated 
by the image under )(d) of the set rl, . ., r+kI1 

Let m be an integer such that mM = 0, so that M is an A-module where 
A = Z/mZ. For v E M define oi(v) E A as the ith coordinate of v (defined modulo 
1) multiplied by m. This gives a system of A-linear forms 0,... ., Od E M* which 
is complete in the sense that, if Oi(v) = 0 for all i, then v = 0. 

The main step of the algorithm is to transform the given generating system into 
a system of vectors vi, .. ., Vd E M with the following properties: 

(i) ?)S (vi) = () if i > j, 
(ii) Oj(vj) = 0 implies vj = 0, 

(iii) v E M and 0,(v) = 0 for all 1 < j imply v E >j Av , 
(iv) /j (vj) has a representative which divides m. 

For this, we recursively construct d other systems (which may not generate M) 
as follows. Let u ... ., ul be the jth system (the first system is the given generating 
system). If j(ui) = 0 for all i, we put vj = 0, and take the (j + 1)st system to 
be identical to the jth. Otherwise, let a be the (nonzero) ideal of A generated by 
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the elements qj (ui), i = 1,... ,, and construct uI,..., u+1, generating the same 
submodule as the jth system, such that qj (u') = 0 for all i < 1 + 1, and such 
that q$(u+) generates the ideal a. This is done by using the Euclidean algorithm 
to determine a1,... ,al and b1,... ,bl E A such that a = a1q(ul) + + al(uj) 
generates a, and q(ui) = bia for all i < I + 1; then take u+ = al1ul + + alul and 
U/ = ui- biul1 for i < I + 1. Finally, put vj = u'4, and take the (j + I)st system 
to be v', ... , v, a0v+ 1, where ao is a generator for the ideal {y E AIyqj$(u+1) = 0}. 

We now verify the first three properties for the system vi,.. ., vd. One can easily 
verify, by induction on j, that if u belongs to the jth system as above, then q1 (u) = 0 
for 1 < j and, since vj is chosen in the submodule generated by the jth system, 
we also have 1i(vj) = 0. This proves the first property. The second is immediate 
from the construction. To prove the third, notice that vi,... , vd generate the same 
submodule as the jth system. In particular, v1,..., vd generate M. Any v E M 
can therefore be written as v = aivl. Choose, among such expressions, that for 
which the index of the first nonzero coefficient is maximal. If this index is jo < 5, 
and if XI(v) = 0 for 1 < j, we have ao0q3o0(v0) = 0 and, by construction, aj,vjo 
belongs to the submodule generated by the (jo + l)st system, contradicting the 
maximality property jo. Finally, one can achieve property (iv) by multiplying vi 
by a suitable invertible element of A. This does not affect the validity of (i)-(iii). 

Proposition 9. If V1,. . , Vd E M satisfy the above properties (i) -(iv), then any 
set of vectors Vl, . . ., Vd E Rd satisfying 

(i) can(vj) = vi and the first i - 1 coordinates of Vj are 0, 
(ii) if vi 78 0, then the ith coordinate of v-i is the inverse of an integer, 

(iii) if vi = 0, then vi = ei, 

is a lattice basis for the inverse image of M (and therefore for Ad) by the mapping 
(1). 

Proof. It is sufficient to show that Zd is contained in the subgroup generated by the 
vi's. We show recursively that ei is in the subgroup generated by vi,... , vd. This is 
clear for i = d or if vi = 0. Assume the fact true for i + 1, and vi + 0. By (ii) there 
is an integer ci such that the ith coordinate of v = ei - ci is zero. If v = can(v), 
then qj (v) = 0 if j < i so that v E Z1>j Av1 (see the proposition above, item 
(iii)). This implies that v belongs to the subgroup generated by Vi+1v... , 1Vd and 
Zd. From our assumption for i + 1, v actually belongs to the subgroup generated 
by vi+i,... , vd since all these vectors (including v) have their first i coordinates 
equal to zero. We conclude that ei = v + cPi belongs to the subgroup generated by 
Vi, * * Vd- L 

Any choice of a basis v1,.... , Pd for Ad satisfying the conditions in the above 
proposition can then be used to determine a vector w by the conditions vi . w = 0 
for i < d and vd w = 1. This is the sought for vector since it clearly belongs to 
A(d), and it generates, with A(d-1) x {0}, a lattice of the same volume as A(d). 
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